Telegram Group & Telegram Channel
🔥 Команда дня: einsum или как реализовать multi-head self-attention без единого цикла

Если вы работаете с нейросетями, особенно с трансформерами, то, скорее всего, сталкивались с реализациями self-attention, переполненными циклами. Однако благодаря np.einsum можно выразить всю механику multi-head attention в компактной и векторизованной форме.

Вот пример реализации:
def multi_head_attention(X, W_q, W_k, W_v, W_o):  
d_k = W_k.shape[-1]
Q = np.einsum('si,hij->hsj', X, W_q) # (n_heads, seq_len, d_k)
K = np.einsum('si,hik->hsk', X, W_k)
V = np.einsum('si,hiv->hsv', X, W_v)
scores = Q @ K.transpose(0, 2, 1) / np.sqrt(d_k)
weights = softmax(scores, axis=-1)
output = weights @ V
projected = np.einsum('hsv,hvd->hsd', output, W_o)
return projected.transpose(1, 0, 2).reshape(seq_len, -1)


💡 einsum — мощный инструмент для выражения сложных операций с многомерными массивами. Особенно полезен, когда нужно точно контролировать свёртки и трансформации осей. В задачах NLP и computer vision это буквально незаменимая вещь.

📌 Почему стоит обратить внимание:
— Полная векторизация — минимум циклов, максимум скорости;
— Код ближе к математике, а значит — легче проверять;
— Можно выразить довольно сложные операции с тензорами в одной строке.

Библиотека дата-сайентиста #буст



tg-me.com/dsproglib/6471
Create:
Last Update:

🔥 Команда дня: einsum или как реализовать multi-head self-attention без единого цикла

Если вы работаете с нейросетями, особенно с трансформерами, то, скорее всего, сталкивались с реализациями self-attention, переполненными циклами. Однако благодаря np.einsum можно выразить всю механику multi-head attention в компактной и векторизованной форме.

Вот пример реализации:

def multi_head_attention(X, W_q, W_k, W_v, W_o):  
d_k = W_k.shape[-1]
Q = np.einsum('si,hij->hsj', X, W_q) # (n_heads, seq_len, d_k)
K = np.einsum('si,hik->hsk', X, W_k)
V = np.einsum('si,hiv->hsv', X, W_v)
scores = Q @ K.transpose(0, 2, 1) / np.sqrt(d_k)
weights = softmax(scores, axis=-1)
output = weights @ V
projected = np.einsum('hsv,hvd->hsd', output, W_o)
return projected.transpose(1, 0, 2).reshape(seq_len, -1)


💡 einsum — мощный инструмент для выражения сложных операций с многомерными массивами. Особенно полезен, когда нужно точно контролировать свёртки и трансформации осей. В задачах NLP и computer vision это буквально незаменимая вещь.

📌 Почему стоит обратить внимание:
— Полная векторизация — минимум циклов, максимум скорости;
— Код ближе к математике, а значит — легче проверять;
— Можно выразить довольно сложные операции с тензорами в одной строке.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6471

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from ms


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA